

RESEARCH AND DEVELOPMENT IN ANIMAL SCIENCE

diets are Hermetia illucens (black soldier fly), larvae of Musca domestica (common housefly), and Tenebrio molitor (yellow mealworm). Black soldiers larvae meal is a suitable ingredient in growing pigs diets, being valuable in particular for its protein, lipid and Ca content and palatability (Newton et al., 1977). The unbalanced aminoacid content of prepupae meal may be a limiting factor in diets for early weaned piglets; additional refinement, such as cuticle removal and rendering, may be necessary to make it more suitable for piglets. The common housefly (M. domestica) maggot is of particular interest because it can grow on a large range of substrates and transform wastes into a valuable biomass rich in protein and fat. Sows and piglets fed maggot meal did not show any adverse effect on performances and health, and on sensorial property of meat (Bayandina and Inkina, 1980). Positive results were observed on weaned pigs fed a soybean based diet supplemented with 10% maggot meal to replace fishmeal (Viroje and Malin, 1989). Also yellow mealworm (Tenebrio molitor) could be suitable in animal feeding due to its high content of crude protein (47-60%) and fat (31-43%), but at the moment no information is available for pigs and ruminants. Future research on insect meal is needed, focused in particular on safety hazards helping EU to assess conclusive laws on the use of insect meals in pig diets.

P-160

Insects as innovative protein source for fish feeds: a brief review

Laura Gasco^{1,2}, Genciana Terova², Gabriele Acuti², Paolo Bani², Pier Paolo Danieli², Antonella Dalle Zotte², Anna De Angelis², Riccardo Fortina², Giuliana Parisi², Giovanni Piccolo², Luciano Pinotti², Aldo Prandini², Rosaria Marino², Achille Schiavone², Francesca Tulli², Alessandra Roncarati²

¹Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Grugliasco (TO), Italy ²Commissione ASPA, Utilizzo di fonti proteiche innovative nell'alimentazione animale

Corresponding author: laura.gasco@unito.it

Global fish production has grown steadily over the last 5 decades reaching a total of 158 million tons in 2012 with more than 42% coming from aquaculture. From 1980 to 2012, the global aquaculture production grew at an average annual rate of 8.6% and this increasing trend is expected to continue. In order to feed the world population (9 billion in 2050), food production must increase by 70% and aquaculture production will need to increase by 133%. An increased availability of quality aqua feeds is required for sustaining such rates of increase in aquaculture production. Fish meal (FM) is the optimal protein ingredient in fish feeds and still widely used. However, aqua feed production is under increasing pressure due to limited supplies and increasing price of FM. This means that FM will likely continue to be an

important ingredient, but it will increasingly be used in combination with other ingredients. Plants already deliver the majority of the protein to diets for farmed fish due to the abundance, potential for increased production and low cost. However, inclusion of vegetable meal in aqua feeds (mainly soybean meal ,Äì SBM) is limited since a number of adverse effects are observed. Furthermore, the massive utilization in animal feeding of vegetable meal poses severe environmental issues. Therefore, scientific research must focus on new protein sources able to save biodiversity and to guarantee the sustainability of aquaculture productions. FAO indicates insects as innovative source to be employed in feed, due to their high nutritional value, especially in terms of crude protein (CP) content. In aquaculture, trials have shown that their use is possible with good growth performances even if some amino acid limitations have been highlighted. Insect meal could thus make a significant contribution to the sustainable development of the aquaculture industry. In this scenario, the Committee on ,ÄúUsing innovative sources of protein in animal feed,Äù, appointed by the ASPA, is studying and discussing recent advances in feed research towards innovative new high protein feedstuff to be included in feeds. Different topics are focusing on insect meal, microalgae and animal by-products processed with innovative techniques that can be more sustainable and available on a global basis.

Acknowledgements

Partially supported by *Ricerca Corrente n. 13C08* and *Fondazione Cariplo grant n. 2014-0550.*

P-161

Role of resistant starch from different sources on the *in vitro* production of short-chain fatty acids in a pig model

Gianluca Giuberti, Antonio Gallo, Maurizio Moschini, Francesco Masoero

Istituto di Scienze degli Alimenti e della Nutrizione, Università Cattolica del Sacro Cuore, Piacenza, Italy Corresponding author: gianluca.giuberti@unicatt.it

There is increasing interest in incorporating nutrients that may act as potential prebiotic sources in pig diets, including resistant starch (RS). Pig colonic bacteria ferment RS to short-chain fatty acids (SCFA) that exert several physiological effects related to energy supply and renewal of intestinal cells. The aim of this work was to evaluate whether the fermentation of RS from different starches may influence SCFA fermentation patterns and related kinetics. An *in vitro* experiment based on enzymatic digestion followed by fermentation with faecal inoculum was conducted and 5 native purified starches were tested. Each ingredient was pre-treated with a pepsin-pancreatin hydrolysis and 200 mg of each hydrolysed RS residue was then incubated in

